
www.manaraa.com

Deep phenotyping to predict live birth
outcomes in in vitro fertilization
Prajna Banerjeea,1, Bokyung Choib,1, Lora K. Shahinea,c, Sunny H. Juna,d, Kathleen O’Learya,
Ruth B. Lathia, Lynn M. Westphala, Wing H. Wonge, and Mylene W. M. Yaoa,2

aDepartment of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305; bDepartment of Applied Physics, School of
Humanities and Sciences, Stanford University, Stanford, CA 94305; cPacific Northwest Fertility and In Vitro Fertilization Specialists, Seattle, WA 98104;
dDepartment of Obstetrics and Gynecology, Palo Alto Medical Foundation, Fremont, CA 94538; and eDepartment of Statistics, School of Humanities and
Sciences, Stanford University, Stanford, CA 94305

Edited* by Grace Wahba, University of Wisconsin, Madison, WI, and approved June 1, 2010 (received for review February 24, 2010)

Nearly 75% of in vitro fertilization (IVF) treatments do not result in
live births and patients are largely guided by a generalized age-
based prognostic stratification. We sought to provide personalized
and validated prognosis by using available clinical and embryo
data from prior, failed treatments to predict live birth probabilities
in the subsequent treatment. We generated a boosted tree model,
IVFBT, by training it with IVF outcomes data from 1,676 first cycles
(C1s) from 2003–2006, followed by external validation with 634
cycles from 2007–2008, respectively. We tested whether this model
could predict the probability of having a live birth in the subse-
quent treatment (C2). By using nondeterministic methods to iden-
tify prognostic factors and their relative nonredundant contri-
bution, we generated a prediction model, IVFBT, that was superior
to the age-based control by providing over 1,000-fold improve-
ment to fit new data (p < 0.05), and increased discrimination by
receiver–operative characteristic analysis (area-under-the-curve,
0.80 vs. 0.68 for C1, 0.68 vs. 0.58 for C2). IVFBT provided predictions
thatweremore accurate for∼83%of C1 and ∼60%of C2 cycles that
were out of the range predicted by age. Over half of those patients
were reclassified to have higher live birth probabilities.We showed
that data from a prior cycle could be used effectively to provide
personalized and validated live birth probabilities in a subsequent
cycle. Our approach may be replicated and further validated in
other IVF clinics.
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In vitro fertilization (IVF) has enabled the conception of 1% of
newborns in the United States per year, and 1 million babies

worldwide since its inception (1, 2). For most subfertile couples,
IVF treatment offers the highest live birth rate per treatment cy-
cle. However, the decision to pursue IVF treatment after a failed
attempt is challenging due to the high cost and uncertain prog-
nosis. This lack of information about how to modify treatments to
improve a couple’s chance of a live birth may contribute to risks
of multiple gestations or further futile treatments (3, 4).

Numerous factors, such as patient’s age and embryo para-
meters, are associated with IVF outcomes (5–7), but their relative
influence on live birth outcomes is not understood. Thus, prog-
nostic counseling in IVF has largely been guided by age-based
data with minor adjustments based on other clinical factors (2,
8–10). In addition, IVF prediction models described previously
have limited utility. Some models predicted pregnancy status
rather than live births; others were developed before current clin-
ical and laboratory protocols; and importantly, most prediction
models did not link outcomes of cryopreserved–thawed embryo
transfers (11–13).

Previous IVF prediction models have also not been evaluated
by all key criteria—likelihood to fit (i.e., predict), calibration, dis-
crimination, and reclassification—that are specific and essential
to prognostic models. For example, prediction of a future clinical
state is most meaningfully expressed as probability, rather than

“yes” or “no” prediction often used in diagnostics (13–15). In
addition, using sensitivity and specificity to measure “accuracy”
may not be as meaningful for a prognostic test as it is for
diagnostics. Instead, the power and utility of a prognostic test
is measured by its likelihood to fit new data, concordance
between predicted probabilities to observed outcomes, range
of probabilities that can be predicted, and its ability to discrimi-
nate patients by prognoses. Most importantly, these criteria must
be externally validated by an independent dataset (13).

We aimed to develop a prognostic tool that would provide
patients with an evidence-based and personalized prediction of
their live birth outcome. We propose that the probability of live
birth outcome per cycle is determined by a highly predictable
component, in addition to random effects. We previously proved
that pregnancy status could be predicted by boosted tree analysis
that stratified patients according to clinical profiles (16). In this
study, we used boosted tree to perform “deep phenotyping” (17)
(e.g., the sorting of patients into subsets defined by similar clinical
characteristics) by using data that are known prior to, and during,
the first IVF cycle, to generate a model for predicting live birth
probabilities in IVF (see Methods).

Rigorous evaluation of this prediction model, IVFBT, showed
that it is superior to age-based control models according to emer-
ging statistical criteria for prognostics (15). Many variables were
found to have unique and complex relationships. By not making
assumptions about these relationships or the relative influence of
variables, we were able to use available clinical and embryo data
to better predict live birth outcomes in the current/first cycle
(C1). However, because embryo data are critical to the establish-
ment of the IVFBT model, this prediction model will not be able
to provide live birth probabilities prior to starting the first IVF
cycle. Nevertheless, importantly, we have shown that this clinical
data pertaining to a failed IVF cycle can predict the couple’s
probability of a live birth in a subsequent cycle (C2). Further,
our strategy is fluid and may be replicated in other IVF clinics.
This model may be further validated for its direct applications in
other clinics to significantly improve prognostic counseling after
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failure of an IVF cycle (Fig. 1A). Finally, this approach may also
be applied in future investigations to better identify patients who
are at risk for multiple births.

Results
Cycles, Variables, and Their Association with Live Birth Outcomes.
Data and outcomes for 5,035 IVF treatments performed in
2003–2008 were retrieved. Inclusion and exclusion criteria were
fulfilled by 3,117 fresh, autologous oocyte IVF cycles from 2003–
2006. The training set was formed by 2,708 completed cycles,
which comprised 1,676; 732; and 300 completed C1, C2, and
C3 cycles, respectively, for analysis (Fig. 1B). Overall, the live
birth rates for C1, C2, and C3, were 29%, 18%, and 14%, respec-
tively. Of 1,196 C1 patients (71% of 1,676) who did not have a live
birth, 732 (61%) returned for C2 treatment and 464 (39%) of
patients dropped out (see SI Text).

Thirty of the 52 variables were confirmed to be significantly
associated with live birth outcomes by univariate analysis
(p value < 0.05, Table 1). For example, normal fertilization and
the rate of blastocyst development were positively associated,
whereas clinical diagnosis of diminished ovarian reserve and the
number of unfertilized eggs were negatively associated with live
birth outcomes.

We previously found that stepwise logistic regression was not
appropriate (SI Text). In addition, many pairs of continuous vari-
ables were highly correlated by Pearson correlation coefficient
(Table S1). However, the potential for significant interactions
among variables was not known. For these reasons and others
discussed above, we applied a boosted tree method to 1,676 com-
pleted C1 and their outcomes, including outcomes of 440 linked
cryopreserved–thawed embryo transfer procedures from the
2003–2006 training set, to generate prediction models for live
birth outcomes (Fig. 1B and Table 1).

Personalized Prognosis Without Stratification. Traditional classifica-
tion tree models have been used in infertility research to establish
predictive criteria by training prediction models to recognize
complex relationships among variables (16, 18). Using the dataset
comprising 1,676 C1 patients from 2003–2006 (hereafter, training
dataset) (Fig. 1B), we generated an example of a tree model by
classification and regression trees (CART) (19), and demon-
strated that it offered improved live birth prediction compared to
an age-control model in C1 (see SI Methods and Fig. S1). Most
importantly, CART analysis revealed unique and complex inter-
actions at least among the top five prognostic variables (SI Text
and Fig. S1). However, the boosted tree model, which aggregates
a collection of simple trees, is known to produce significantly
superior results (20–23). Hence, we applied the boosted tree
methodology to generate a model (IVFBT), to predict live birth
outcomes.

Data analysis by Generalized BoostedModels (GBM®) (23), a
free software implementation of stochastic gradient boosting al-
gorithm (20), revealed the relative and nonredundant influence
of all 52 variables, which was used to generate the IVFBT model
to predict a continuous range of live birth outcome probabilities,
without partitioning the population into discrete and discontin-
uous groups (seeMethods). Relative influence is the independent
contribution to outcomes that is made by each variable indepen-
dent of the other 51 variables and is scaled to 100 as the maximum
relative influence made collectively by all variables. The top in-
fluential factors were rate of blastocyst development (relative in-
fluence, 26%), the total amount of gonadotropins administered
(10%), the number of eight-cell embryos (9%), embryo cryopre-
servation (7%), the age of female patient (6%), endometrial
thickness (6%), and total number of embryos (6%) (Fig. 2).

We externally validated the IVFBT model using an indepen-
dent dataset comprising 634 C1 and 230 C2 from 2007–2008
(hereafter, external validation set), that are unrelated to the pa-
tients and cycles of the training set used to generate the model
(Fig. 1B and Table S2). Of note, 21 of 52 clinical variables (40%)
were significantly different between the training and validation
datasets, including age, amount of gonadotropins required, and
number of eight-cell embryos (Table S2). Thus, the independent
dataset truly served as external validation. To evaluate the predic-
tive power of IVFBT, we tested the null hypothesis that the like-

Fig. 1. IVF treatment cycle and data collection from the SHC. (A) Sequence
of events in a typical IVF treatment cycle. This schematic describes the factors
analyzed during model generation with respect to an IVF treatment cycle. If
no live birth results and there are no cryopreserved embryos available, then
the ability to predict subsequent cycle outcomes a priori would support
decision-making. OCP, oral birth control pill, is commonly used to down-reg-
ulate endogenous gonadotropin hormone secretion; ICSI, intracytoplasmic
sperm injection, is commonly used instead or in addition to in vitro fertiliza-
tion to fertilize eggs in vitro; FSH, follicle stimulating hormone. (B) Source of
clinical data. The numbers in the gray boxes indicate the number of fresh
cycles performed at SHC from 2003–2008. See SI Methods for detailed expla-
nation of exclusion criteria. The fresh cycles analyzed were further classified
into C1, C2, and C3, which tracked data and outcomes to the corresponding
fresh IVF cycle. The red boxes represent the three datasets used for model
generation and validation.

Fig. 2. Prognostic factors and their relative influence in the IVFBT model. Of
52 variables analyzed, the top 10 nonredundant variables and their “relative
influence” are shown here. The model was established by setting the sum of
all relative influences to 100%. Variables with an individual influence of
<2.5% were placed under “Others.”
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Table 1. Variables analyzed and their association with live birth outcome by univariate analysis of 1,676 C1 cycles from 2003–2006 (training
dataset)

Pre-IVF factors

Variables Estimate* SEM p value† Mean‡ SD % missing§

Continuous variables
Age of patient, yr −3.50E−04 3.60E−05 p < 0.001 40.99 4.56 0
Age of male partner, yr −8.30E − 05 1.80E−05 p < 0.001 42.95 5.82 0
Body mass index, kg∕m2 −5.60E−03 7.30E−03 0.53 24.9 9.75 9.4
No. of previous pregnancies¶ −4.40E−02 4.70E−02 0.39 1.04 1.33 0.1
No. of previous term deliveries∥ −2.00E−01 8.50E−02 0.04 0.27 0.6 2.8
Spontaneous miscarriages** −1.80E−01 7.30E−02 0.04 0.41 0.82 1.7
Serum day 3 FSH, IU∕L −4.00E−02 1.60E−02 0.02 8.05 4.92 5.1
Year þ2.60E−02 4.80E−02 0.66 4.32 1.12 0
Categorical variables
Diminished ovarian reserve −1.10Eþ00 1.20E−01 p < 0.001 0.39 0.49 0
Polycystic ovarian syndrome þ6.20E−01 1.70E−01 p < 0.001 0.09 0.29 0
Unexplained female infertility þ4.50E−01 1.80E−01 0.02 0.09 0.28 0
Other causes for infertility −1.30E−01 1.20E−01 0.37 0.34 0.47 0
Tubal disease −9.50E−02 1.70E−01 0.65 0.12 0.32 0
Uterine fibroids −2.00E−01 2.00E−01 0.40 0.09 0.28 0
Endometriosis −7.30E−02 1.60E−01 0.67 0.14 0.35 0
Male infertility þ4.50E−02 1.10E−01 0.72 0.42 0.49 0
Male-only infertility causes þ4.60E−01 1.60E−01 0.009 0.11 0.32 0
Tubal ligation þ1.20E−01 4.10E−01 0.79 0.01 0.12 0
Hydrosalpinx þ1.80E−01 3.70E−01 0.67 0.02 0.14 0
Season þ2.10E−01 1.50E−01 0.32 0.22 0.42 0

Protocol and treatment factors
Continuous variables
Total amount of gonadotropin, units −3.60E−04 2.70E−05 p < 0.001 4,769.14 1990.4 0
Endometrial thickness, mm þ1.90E−01 2.80E−02 p < 0.001 10 2.1 0.3
No. of sperm motile after wash, million∕mL −3.60E−04 2.90E−04 0.32 128.41 244.6 2.2
No. of sperm motile before wash, million∕mL −2.60E−04 3.30E−04 0.53 106.46 198.93 2.3
Total no. of oocytes þ9.9:0E−02 8.70E−03 p < 0.001 10.25 6.63 0
Normal and mature oocytes, % þ1.30Eþ00 1.10Eþ00 0.35 0.97 0.08 0.8
Normal fertilization, % þ9.20E−01 2.60E−01 p < 0.001 0.65 0.24 0
Unfertilized eggs, % −7.90E−01 2.70E−01 0.007 0.27 0.23 0
Abnormally fertilized eggs, % −6.50E−01 4.90E−01 0.30 0.08 0.14 0
Total number of embryos þ1.50E−01 1.20E−02 p < 0.001 5.92 4.94 0
Compaction on day 3 þ2.80E−01 2.70E−01 0.40 0.09 0.2 0
Average no. of cells per embryos þ2.90E−01 4.50E−02 p < 0.001 6.75 1.32 2.6
No. embryos arrested at ≥4 cells −1.30E−02 2.70E−03 p < 0.001 16.74 23.52 2.6
No. of eight-cell embryos þ2.70E−01 2.20E−02 p < 0.001 2.81 2.84 2.6
Percentage of eight-cell embryos, % þ9.50E−03 1.90E−03 p < 0.001 40.46 29.08 2.6
Blastocyst development, % þ3.20Eþ00 2.40E−01 p < 0.001 0.15 0.23 0
Embryo cryopreservation, % þ2.30Eþ00 2.50E−01 p < 0.001 0.11 0.19 0
Average grade of embryos −1.50E−01 1.10E−01 0.29 1.83 0.61 35.5
Total no. of transferred embryos −9.00E−02 4.10E−02 0.06 2.57 1.32 0
Average nos. of cells per transferred embryos þ4.20E−01 6.60E−02 p < 0.001 7.17 1.35 0.5
Average grade of transferred embryos −2.70E−01 1.40E−01 0.10 1.74 0.63 33.3
No. of transferred embryos with ≥4 cells −2.10E−02 5.00E−03 p < 0.001 9.9 24.1 0.5
No. of transferred embryos with ≥8 cells þ3.40E−01 6.10E−02 p < 0.001 1.38 1.16 0.5
Percentage of eight-cell embryos transferred þ1.20E−02 2.00E−03 p < 0.001 48.71 37.61 0.5
Categorical variables
Oral contraception for down-regulation of endogenous gonadotropins þ6.60E−01 1.90E−01 0.001 0.87 0.34 0.1
Stimulation protocol −1.20Eþ00 1.20E−01 p < 0.001 0.47 0.5 0.7
Sperm from male partner þ2.20E−01 2.60E−01 0.52 0.04 0.2 0
Sperm from donor −4.00E−01 4.60E−01 0.51 0.02 0.13 0
Performance of intracytoplasmic sperm injection þ3.30E−01 1.10E−01 0.003 0.41 0.49 0
Assisted hatching −9.50E−01 1.90E−01 p < 0.001 0.32 0.47 0
Day 5 embryo transfer þ1.40Eþ00 1.20E−01 p < 0.001 0.27 0.44 5.0
Preimplantation genetic diagnosis/screening þ3.00E−02 2.80E−01 0.91 0.04 0.19 0

The top half of Table 1 (Pre-IVF factors) represents 20 variables that are available before the start of the IVF treatment cycle. The bottom half of Table 1
(Protocol and treatment factors) represents 32 variables that are based on the treatment cycle and protocol. The variables have also been classified as
continuous or categorical based on their numeric/nonnumeric values. FSH, follicle stimulating hormone.
*Positive and negative estimates indicate positive and negative association with live birth outcomes, respectively.
†The p value represents significance of association with live birth outcome.
‡Mean for continuous variables indicates the mean value of each variable among the entire dataset analyzed; mean for categorical variables indicates the
average number of positive occurrences in the entire dataset analyzed.

§Percentage of data entries missing. Note: Data entries for “Average grade of embryos”was not complete for ∼30% of cycles, and “Compaction rate”was
not entered routinely in the 2007–2008 dataset.

¶Number of previous positive clinical pregnancies
∥Number of previous deliveries carried to term, 37 weeks gestation.
**Miscarriages refer to development stopped at or after 5 weeks gestation.
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lihood of IVFBT to fit independent data was equal to that of con-
trol models, and found that IVFBT was more than 1,000 times
more likely to fit new data compared to a control model that used
age alone (AgeT) or variables that are known prior to starting
IVF (pre-IVF factors) (p < 0.0001; see SI Methods). Hence, the
use of pre-IVF factors to predict C2 outcomes was not further
pursued.

Thus, we have shown that live birth probabilities in IVF can be
predicted using clinical variables known prior to starting IVF, re-
sponse to hormonal stimulation, and embryo parameters. When
used alone, age may be misleading as a prognostic factor, due to
the complex and as yet uncharacterized relationships among age,
hormonal response, and embryo parameters such as blastocyst
formation rate and total number of embryos (Fig. 2A).

Predicting Live Birth Outcomes for the Next Cycle.TheIVFBT-model-
required embryo data, which would not be known prior to starting
an IVF cycle, are critical to development of the IVFBT model. To
determine its clinical utility, we testedwhether data from the index
cycle (C1) could serve as proxy for C2 data to predict live birth out-
comes for C2, without using clinical data fromC2. Our goal was to
simulate the scenario inwhichpatients donot have a live birth after
C1 and wish to know their personalized probabilities to have a live
birth if they were to repeat the same treatment (e.g., C2).

Although cycle number itself was not found to be an indepen-
dent predictor by GBM analysis, we found that the clinical/em-
bryo phenotypes were typically worse in C2 than C1 (Table S2).
Thus, using a prediction model that is based on C1 data alone
would overestimate the live birth probabilities for C2. Using
the IVFBT model, we generated C1–C2 predicted probability
pairs from the training data, to determine a linear model in
the logit scale, to measure the difference between C1 and C2 pre-
dictions. This linear model was then used to calculate IVFBT-C2,
by adjusting the IVFBT prediction for C2. The AgeT model was
modified by using patient’s age at C2 (rather than C1) in the
training set to generate AgeT-C2, which controls for C2 predic-
tion that was attributed to age alone, without the use of other pre-
IVF, treatment, or embryo factors. All of the variables used C1
values as proxy to predict C2 outcomes in the IVFBT-C2 model.

The use of IVFBT, which was generated using C1 data only,
would not have introduced bias from self-selection of C2 popula-
tion (e.g., patients’ decision to take C2 treatment or to drop out
of treatment), but the use of C2 outcomes in the adjustment pro-
cedure to generate IVFBT-C2 had the potential to introduce bias.
However, we ascertained that introduction of this type of bias was
unlikely because the probabilities of live birth outcome were not
differentially distributed between patients who returned for C2
treatment and patients who dropped out of treatment (see
SI Text and Table S3). Finally, we evaluated the predictive power
of IVFBT-C2 as described for IVFBT-C1 above. We tested the null
hypothesis that the likelihood of IVFBT-C2 to fit independent
data was equal to that of the AgeT model, and found that
IVFBT-C2 was 1,000 times more likely to fit new data compared
to the AgeT model (p < 0.05). Therefore, IVFBT-C2 improved
the fit significantly to the new data compared to control (see
SI Methods).

Testing Calibration and Discrimination of Prognostic Model. The ap-
plicability of a prognostic tool also depends on calibration, which
measures the concordance between predicted probabilities and
rates of observed outcomes (13, 14). Therefore, calibration could
be thought of as a measure of accuracy that is meaningful for
prognostic tests. Using the external validation set, we tested cali-
bration by stratifying patients into groups based on their pre-
dicted probabilities of live birth by IVFBT and AgeT for C1
prediction, and IVFBTC2 and AgeTC2 for C2 prediction (Fig. 3
A and B). Overall, both sets of models were very well calibrated at

a 95% confidence interval (p > 0.1, Holsmer–Lemeshow good-
ness-of-fit test, Fig. 3 A and B, and SI Methods).

Nevertheless, calibration graphs could not fully illustrate the
dynamic range of predicted probabilities for all patients. The
significantly wider dynamic range of IVFBT compared to AgeT
is demonstrated by a scatter plot analysis of predicted probabil-
ities for all patients in the external validation sets for C1 and C2
predictions. For example, for C1 prediction, IVFBT predicted live
birth probabilities ranging from near zero to 80%, whereas con-
ventional age categories predicted discrete live birth probabilities
ranging from 5% to 41% (Fig. 3C). Similarly, for C2 prediction,
IVFBT predicted live birth probabilities ranging from near zero to
∼50%, whereas adjusted age categories predicted probabilities
ranging from near zero to 33% (Fig. 3D).

Interestingly, although cycle number did not have independent
effects on live birth outcomes by GBM analysis, age-based
prediction of live birth outcomes for C1 and C2 were significantly
different (p < 0.005, two-way ANOVA test, Fig. 3 C and D).
These results highlight the overestimation of live birth rates
per cycle, using the current age-based paradigm, which is typically
presented without adjustments for repeat treatments (9, 24).

We further assessed the ability of IVFBT to discriminate pa-
tients with different probabilities of live birth by computing
the area under the receiver–operator curve (14). The area under
the curve (AUC) measures discrimination based on the true and
false positive rates at a series of arbitrarily defined thresholds.
Although the AUC may be less meaningful for prognostic than
diagnostic tests (15), it allowed a direct comparison with the Tem-
pleton model (25), one of few reputed live birth prediction mod-
els in IVF (AUC ¼ 0.63). Using the external validation set to test
C1 prediction, we found that IVFBT (AUC ¼ 0.8) was superior to
AgeT (AUC ¼ 0.68) (Fig. 3E). For C2 prediction, IVFBTC2
(AUC ¼ 0.68) was similarly superior to AgeTC2 (AUC ¼ 0.58)
(Fig. 3F). Thus, both prediction models were ∼17% more discri-
minatory than respective age controls and the Templeton model.

Finally, to understand the full utility of our prediction model,
we determined the percentage of patients whose prognosis would
be reclassified—be given a different probability of achieving
live birth—by IVFBT compared to AgeT. Overall, IVFBT and
IVFBTC2 models predicted live birth probabilities that were sig-
nificantly different and out of the range predicted by their respec-
tive age controls in ∼83% and ∼60% of patients, respectively
(Fig. 3 C and D). Of patients that were reclassified, 50% and
60% were assigned higher predicted live birth probabilities by
IVFBT and IVFBTC2models, respectively, compared to the prob-
abilities predicted by age models. The reclassification rate for
IVFBTC2 would have been even higher if the validation set
had comprised a larger number of cycles.

Collectively, given the superior fit and calibration of IVFBT, its
high rate of reclassification indicated that the current age-based
paradigm may provide misleading live birth outcome probabil-
ities for a large portion of patients. Overall, we have demon-
strated that the IVFBT model, which utilized a large composite
of commonly recorded clinical variables, is robust and superior
to the age-control model. Most importantly, we provided proof
that live birth outcomes can be predicted by applying the
IVFBT model to analyze clinical data obtained from a previous
IVF cycle at the same clinic.

Discussion
Both medical and personal decisions regarding IVF treatment
may hinge on the probability of live birth outcome for many pa-
tients. Given the financial, physical, and emotional costs of IVF,
high-quality personalized prognostic information should assist
patients’ decisions to continue treatment, pursue alternative op-
tions such as egg or embryo donation, or drop out of treatment
(26). Patients have been counseled to focus on cumulative live
birth rates rather than success rate per cycle (8, 27). However,
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live birth probabilities have traditionally been based on age, and
determined for large groups of patients, despite limited applic-
ability of age-based probabilities for the individual patient. De-
spite efforts to generate an IVF prediction model to address
these needs, even the most rigorously tested published prediction
models could not be validated (13).

We have established an externally validated, highly discrimina-
tory, well-calibrated, and robust prediction model that can use
available clinical data from a previous cycle to predict live birth
rates in a subsequent cycle, without additional clinical or labora-
tory testing. The IVF treatment itself often has been proposed as
a diagnostic/prognostic tool in addition to serving as a therapy.
However, that concept has applied to a small subset of patients
in whom very serious defects of sperm, oocyte, embryo, or ferti-
lization would only be revealed by IVF (28, 29). Our findings
show that the first IVF cycle can be both prognostic and thera-
peutic for all patients, because it would provide quantitative,
customized prediction of the live birth probability in subsequent
cycles. This concept is radically different from the current para-
digm, in which age is a major predictor, and other factors may be
used to adjust the outcomes according to various semiquantita-
tive scoring methods.

This study of IVF outcomes analysis has comprehensively and
simultaneously addressed challenges that have previously con-
tributed to the “black-box” nature of IVF “success rates.” Me-
chanistically, the most significant finding is the complex
relationships among key prognostic factors in influencing live
birth outcomes. For translational and clinical applications, pa-

tient-specific prediction of live birth outcome can be applied
to support physicians in counseling patients and to empower pa-
tients in decision-making after a failed cycle. Further, these
patient-specific live birth probabilities may also be used to deter-
mine patient-specific cumulative live birth rates and the number
of treatments that may be required to reach a live birth (8, 27).
Other applications of these customized prognostics may include
improved candidate identification for elective single-embryo
transfer to decrease the rate of multiple gestations (30), en-
hanced clinical research trial design by refining patient selection,
and ultimately, improved maternal and neonatal health by deter-
mining risk factors. Finally, the power of boosted tree analysis in
predicting IVF outcomes suggests that clinical questions in other
areas of medicine may also benefit from such deep phenotyping.

The strengths of our study include the analysis of many
variables without the need to assume their interactions a priori.
Our model analyzed live birth rates pragmatically, by including
outcomes of linked cryopreserved embryos. The application of
our model was not affected by patients’ self-selection for subse-
quent treatment, which might be a concern in other studies (8).
Specifically, we found that the IVFBT profiles of patients who
dropped out after failed C1 treatments were similar to patients
who returned for a repeat treatment (Table S3). These findings
suggested that some patients might have been influenced by self-
perceived probabilities of live birth outcomes that had little cor-
relation with their true prognosis. Alternatively, some patients
might have dropped out due to factors unrelated to prognosis,
such as finances, or a combination of these and other factors.

Fig. 3. Evaluation of IVFBT and IVFBT C2 in predicting live
birth outcomes in index (C1) and subsequent cycle (C2).
(A) Model calibration for C1 predictions. The five groups
in the AgeT (blue circles) correspond to mean live birth
probabilities as predicted by AgeT for age groups <35,
35–37, 38–40, 41–42, and ≥43, whereas the six groups in
the IVFBT model (A, green squares; B, red squares) indicate
those predicted by IVFBT model. Error bars indicated 95%
confidence interval. Calibration was measured by compar-
ing the predicted and observed live birth rates of 634 in-
dex (C1) cycles (A, green squares) from the 2007–2008
validation set. Note that the grouping was only performed
here to facilitate comparison between IVFBT and the AgeT
models as grouping itself was not required for model de-
velopment. The diagonal line in the graph refers to an
ideal calibration if the predicted and observed live birth
probabilities were identical. (B) Model calibration for C2
predictions. The mean live birth probabilities predicted
by AgeTC2 (blue circles) and IVFBTC2 (red squares) were
compared to mean observed outcomes for 230 C2 in
the external validation dataset from 2007–2008. Both
AgeTC2 and IVFBTC2 were found to be well calibrated
(p > 0.1). (C and D) Patient-specific predictions and reclas-
sification. To compute reclassification of predicted out-
comes by IVFBT, we plotted each patient from 634 C1 (C)
and 230 C2 (D) from the 2007–2008 validation set, based
on age and predicted live birth probabilities. The observed
outcome of each patient was plotted as live birth (O) and
no live birth (X). The bold lines indicate probabilities of live
birth predicted by AgeT (C) or AgeTC2 (D) with their con-
fidence intervals (upper and lower dotted lines). Note the
narrow range of probabilities by age-control models com-
pared to the wide dynamic range predicted by IVFBT or
IVFBTC2. (E and F) Evaluation of discrimination by recei-
ver-operative characteristic (ROC). ROC curves of the
IVTBT model (E, green line for C1 prediction; F, red line
for C2 prediction) and AgeT or AgeTC2 (blue line) are
shown for C1 prediction (E) and C2 prediction (F) of
2007–2008 validation sets. For both C1 and C2 predictions,
the area under the ROC curve is significantly higher for
the IVFBT and IVFBTC2, respectively, compared to age
controls, which indicates that the IVFBT model is more
discriminatory.
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Our work is clinically applicable because data collection
methods met high standards of quality IVF clinics. Our approach
does not require fixed coefficients or variables that are typical
of logistic regression models. Because treatment regimens,
embryology laboratory protocols, and data collection vary among
clinics, a key strength is that our approach may be replicated for
validation in other IVF clinics to establish clinic-specific predic-
tion models that are meaningful to patients in the context of their
clinic. This study is limited by constraints related to data collec-
tion present in most IVF clinics. First, some factors that may have
prognostic value, such as ethnicity (31), antral follicle counts, and
serum anti-Mullerian hormone levels, were not available in our
dataset; hence, they could not be tested in our models. Second,
many indications for IVF treatment were not defined quantita-
tively, and their use might have varied among physicians, which
might explain why baseline diagnoses did not contribute to the
prediction model. The prognostic value of variables that are
not well defined in our dataset may be evaluated by analyzing
datasets from clinics that use and record those variables routinely.
Hence, live birth prediction models generated at different clinics
may comprise different predictors, depending on the available
variables, clinical volume, and any clinic- or demographics-speci-
fic nuances that are not currently understood. Although most of
the top prognostic factors are expected to be consistently signifi-
cant among live birth prediction models derived from different
clinics, we anticipate that their relative importance in predicting
live birth outcomes may be different among clinics.

Alternatively, we propose that IVF overrides many pathophy-
siological factors of infertility, such as anovulation, tubal disease,
and male factor. Thus, conventional clinical diagnoses may be less
relevant in predicting IVF outcomes, as failure likely results from
molecular defects in oocyte, sperm, or embryos that are currently
not overcome by IVF. Despite being influenced by multiple
maternal, paternal, and embryo variables, and their potential in-
teractions, we have established that live birth outcomes in IVF

can be subjected to rigorous scientific investigation, and they
can be predicted.

Methods
Data on clinical diagnoses, IVF treatment protocol and response, embryology
data, and treatment outcomes for all IVF cycles performed between
January 1, 2003 and December 31, 2008 at Stanford Hospital and Clinics
(SHC) were retrieved from our clinical database (BabySentryPro, BabySentry,
Ltd.) or medical records as necessary. Retrospective data collection, deiden-
tification, and analysis were performed according to a human subjects
protocol approved by the SHC Institutional Review Board.

The inclusion criteria for data analysis were freshly stimulated, nondonor
oocyte IVF cycles performed at SHC. For each patient, the first IVF cycle per-
formed at SHC was defined as C1, whereas subsequent cycles following failed
IVF treatments were designated C2, C3, etc. We applied exclusion criteria and
restricted our analysis to cycles that had complete embryo data to generate a
model to predict live birth probabilities (see Fig. 1B and SI Text for exclusion
criteria).

Fifty-two variables, selected for high data quality and completeness, were
analyzed in an unbiased fashion without specific ranking a priori (Table 1).
Over 90%of data fields were completed for 50 of the 52 variables (see Table 1
for details). Twenty of the 52 variables are factors known to physicians prior
to starting an IVF treatment cycle (pre-IVF factors) and 32 variables become
available only during or at the conclusion of an IVF treatment (protocol and
treatment factors, Table 1 and Fig. 1A).

Here, theoutcomeofacyclewasdeterminedbyoutcomesof transfersusing
fresh or cryopreserved–thawed embryos that resulted from fresh, stimulated
cycles. Live birth was defined as the delivery of a live baby beyond 24 weeks
gestationafterthetransferoffreshorcryopreservedembryosthathadresulted
from eligible IVF cycles. The outcome, “no live birth,” encompassed all other
outcomes such as negative or declining serum β-human chorionic gonadotro-
pin, clinical pregnancy loss, intrauterine fetal death, and ectopic pregnancy.
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